NUMERICAL MODELING OF JET FLOWS OF A
VISCOUS LIQUID
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Flows in the jet boundary layer of an incompressible liquid are studied using a numerical finite~
difference method which is developed.

Jet flows, which are widely used in various technological devices, have an essentially non~-self-similar
nature as a rule. This is connected with the fact that the extent of the region of flow is comparable in many
-cases with the characteristic size of the exit cross section of the nozzle device, and the flow is not able to
reach a self-similar state. The non-self-similarity, the strong dependence of the flow on the discharge condi-
tions, hinders the use of the well-known integral methods of calculation [1], and therefore numerical finite~dif-
ference methods are presently used for the solution of such problems. On the other hand, an undeniable advan-
tage of finite-difference methods over integral methods is the fact that the former allow one to avoid the as-
sumptions and simplifying hypotheses inherent to integral methods and to use more complex systems of model-
ing equations.

Let us consider the problem of the jet flow of a viscous incompressible liquid. In the boundary-layer
approximation the system of equations of motion has the form
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k =1 for axisymmetric flow and k = 0 for plane flow. For closure of the system of equations of motion (1) we
use the Kolmogorov —Prandtl model of turbulence [2, 3], in accordance with which the turbulent viscosity £, de-
termined as
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from considerations of dimensionality is expressed in the form

g = C,gA. 2)
To determine G* we use the equation of conservation of the kinetic energy of turbulent pulsations [4]
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in which the dissipation of turbulent energy is determined from the Kolmogorov equation [2]
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while the term V'(qz' + pYp), determining the transverse transport of pulsation energy by the pulsating motion,
is represented in the diffusion form [3]:
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We take the scale of turbulence A as proportional to the transverse integral scale of turbulence, which on the
basis of an analysis of the results of measurements [5-8] can be considered as constant in a cross section of a

jet and linearly dependent on the longitudinal coordinate. Then

A:CAX. (3)

Thus, we have a closed system of Eqs. (2)~(4) describing the flow in the jet boundary layer of an incom-
pressible viscous liquid:
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We take cg, cp, cA, and Cq as constant in the entire field of flow.

For the numerical solution of the system obtained it is necessary to approximate it by difference equa-
tions at the nodes of a finite-difference grid. In the given case the use of the most common rectangular grid in
the (x, y) plane proves to be ineffective, since the thickness of the jet increases strongly in the direction of
flow, which leads to a continuous increase in the number of grid nodes analyzed. The transformation

¥
x4+ x* :
of the transverse coordinate allows one to decrease the growth of the boundary layer of the jet or to eliminate
it entirely. Here the quantities x* and £ are determined at the start of the calculation on the basis of prelimi-

nary estimates of the development of the jet boundary layer. At the same time, they can be corrected in the
process of calculation on the basis of the information obtained.
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Applying the transformation described to system (4), we obtain in the (x, 1) plane
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The system of Eqs. (5) must be supplemented with the boundary conditions
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The proposed numerical algorithm for the solution is based on the idea of scaling. The preliminary
values of the unknown functions are initially found at the half-step of the difference grid using the values of the
functions from the preceding layer as the coefficients of the difference equations. The preliminary values
found are then used for the whole step. This allows one to avoid ite rations due to the nonlinearity of the initial
differential equations, retaining a second order of approximation.

Let us describe the algorithm for the solution in more detail. The differential equations are represented
in finite-difference form using an implicit, two-layer, six-point system on the grid

x, = nAx; M, =mAn; n=01,...; m=0,1, ..., M.

In this case the central differences are used for the first derivatives and the usual three-point equation is used
for the second derivatives. Suppose the values of all the unknown functions are known at the layer x = x,. We
determine up 44/, and ('iflﬂ/z using the systems of difference equations
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Fig. 1 Fig. 2

Fig. 1. Development of the longitudinal velocity profile in a round
laminar jet which initially has a parabolic velocity profile: 1-5) ex~
perimental data [13]. [1)x= 8: 2) 16; 3) 24; 4) 32: 5) 40]; 6) calcula~
tion,

Fig. 2. Mixing region of a plane turbulent jet. Development of longi-
tudinal velocity profile: 1-4) experimental data {14}, [1) x = 10; 2) 15;
3) 20: 1) 30]; 5) calculation.
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are solved by the trial-run method.

As was shown in [10], in the case of the calculation of flooded jet flows (U, = 0) the necessary condition
of good conditionality [9] is not satisfied for the boundary difference problem (6a), (6b), (7), which can lead to
computational instability of the trial-run method. In such a case one can use, for example, a variant of the
trial-run method — the nonmonotonic trial-run method [11]. Following this method one determines the trans-
verse velocity from the difference analog of the continuity equation
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the scale of turbulence A, 4/ and the turbulent viscosity &n+4/, are determined using the corresponding equa-
tions. The next step will be the calculation of up 4+ and?l%i +1 in accordance with the systems of difference equa-
tions
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where the coefficients Ap 41y, Bn+1,ms--+> Hn+1,m 27€ analogous to the corresponding coefficients Ap + 1/, m>
Ba+y2,m+ +++s Hn+12,m> in which t = ax, while the indices p and [ are replaced by n + 1. Then having deter-
min?d the transverse velocity v, . from Eq. (8), replacing the index n + 1/2 by n + 1 and setting t =ax and [ =

n + /2 in it, the scale An+4, and the viscosity en+ one can end the cycle.

The values of the unknown functions at the "zeroth" layer x, are given by the initial conditions, where the
transverse velocity can either be taken equal to 0 or found by the means used in the numerical continuation
method [12].

The method presented was realized on an M-222 computer, with the calculation time for one axial cross
section using 50 node points across the jet being on the order of 0.5 sec. The accuracy of the method and the
applicability of the turbulence model used were estimated through a comparison of the results obtained with
analogous numerical and analytical solutions, as well as with certain experimental data.

The calculated development of the axial velocity profile in a flooded round laminar jet which initially has
a parabolic velocity profile is presented in Fig. 1. The results of the calculation agree well with the experi-
mental data of [13], with the velocity profile practically ceinciding with the classical Schlichting solution [12]
at a considerable distance from the nozzle cut. Here it should be noted that in the case of laminar flows the
equations of motion are exact (with allowance for the fact that the concept of the boundary layer is only an ap-
proximation of the true physical phenomenon, of course) and are closed without the inclusion of semiempirical
equations, and therefore calculations of such flows give a good estimate of the applicability and accuracy of
the numerical method itself.

Figure 2 illustrates the calculation of a turbulent jet in the mixing region. The constants entering into
Egs. (2), (3), and (4) had the following values: cg = 1;¢p = 0.09; CA = 0.014; and ¢q = 1. The experimental data
are taken from [14].

The numerical method presented for the modeling of mixing in jets of incompressible viscous liquid can
be generalized without difficulty to flows with rotation, compressible flows, and to problems with heat and mass
transfer. :

NOTATION

are the longitudinal and transverse coordinates, respectively, normalized to half-width

(radius) of nozzle;
u, v are the average longitudinal and transverse velocities normalized to characteristic ve-

locity U, at jet orifice;
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T, q2 are the turbulent shear stress and kinetic energy of turbulent pulsations normalized to

Uz,
q =Yg p is the density;
p is the pressure normalized to pU};
A, U0, Q are the linear scale of turbulence, velocity of outer flow, and pulsation energy of outer

flow normalized to half-width (radius) of nozzle;
Uy, Ug, Ces C€Ds Cqs
%

cp X, € are the parameters of turbulence model,
x*, & are the parameters of coordinate transformation;
AX, An are the grid steps;
M is the value of coordinate n corresponding to boundary of jet.
Indices

! is the pulsation component;
- is the averaged component.
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